Avian infectious bronchitis virus disrupts the melanoma differentiation associated gene 5 (MDA5) signaling pathway by cleavage of the adaptor protein MAVS
نویسندگان
چکیده
BACKGROUND Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) selectively sense cytoplasmic viral RNA to induce an antiviral immune response. Infectious bronchitis virus (IBV) is one of the most important infectious agents in chickens, and in chicken cells, it can be recognized by MDA5 to activate interferon production. RIG-I is considered to be absent in chickens. However, the absence of RIG-I in chickens raises the question of whether this protein influences the antiviral immune response against IBV infection. RESULTS Here, we showed that chicken cells transfected with domestic goose RIG-I (dgRIG-I) exhibited increased IFN-β activity after IBV infection. We also found that IBV can cleave MAVS, an adaptor protein downstream of RIG-I and MDA5 that acts as a platform for antiviral innate immunity at an early stage of infection. CONCLUSIONS Although chicken MDA5 (chMDA5) is functionally active during IBV infection, the absence of RIG-I may increase the susceptibility of chickens to IBV infection, and IBV may disrupt the activation of the host antiviral response through the cleavage of MAVS.
منابع مشابه
Disruption of TLR3 Signaling Due to Cleavage of TRIF by the Hepatitis A Virus Protease-Polymerase Processing Intermediate, 3CD
Toll-like receptor 3 (TLR3) and cytosolic RIG-I-like helicases (RIG-I and MDA5) sense viral RNAs and activate innate immune signaling pathways that induce expression of interferon (IFN) through specific adaptor proteins, TIR domain-containing adaptor inducing interferon-β (TRIF), and mitochondrial antiviral signaling protein (MAVS), respectively. Previously, we demonstrated that hepatitis A vir...
متن کاملThe DEAH-box RNA helicase DHX15 activates NF-κB and MAPK signaling downstream of MAVS during antiviral responses.
During infection with an RNA virus, the DExD/H-box RNA helicases RIG-I (retinoic acid-inducible gene I) and MDA5 (melanoma differentiation-associated gene 5) activate the interferon regulatory factor 3 (IRF3), nuclear factor κB (NF-κB), c-Jun amino-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways through an unknown mechanism involving the adaptor protein...
متن کاملThe DEAH-Box RNA Helicase DHX15 Activates NF-kB and MAPK Signaling Downstream of MAVS During Antiviral Responses
During infection with an RNA virus, the DExD/H-box RNA helicases RIG-I (retinoic acid–inducible gene I) and MDA5 (melanoma differentiation–associated gene 5) activate the interferon regulatory factor 3 (IRF3), nuclear factor kB (NF-kB), c-Jun amino-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways through an unknown mechanism involving the adaptor protein...
متن کاملMDA5 assembles into a polar helical filament on dsRNA.
Melanoma differentiation-associated protein 5 (MDA5) detects viral dsRNA in the cytoplasm. On binding of RNA, MDA5 forms polymers, which trigger assembly of the signaling adaptor mitochondrial antiviral-signaling protein (MAVS) into its active fibril form. The molecular mechanism of MDA5 signaling is not well understood, however. Here we show that MDA5 forms helical filaments on dsRNA and repor...
متن کاملRIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium.
Rotavirus is a dsRNA virus that infects epithelial cells that line the surface of the small intestine. It causes severe diarrheal illness in children and ∼500,000 deaths per year worldwide. We studied the mechanisms by which intestinal epithelial cells (IECs) sense rotavirus infection and signal IFN-β production, and investigated the importance of IFN-β production by IECs for controlling rotavi...
متن کامل